
[1]

Sails.js Essentials

Get up to speed with Sails.js development with this
fast-paced tutorial

Shaikh Shahid

BIRMINGHAM - MUMBAI

Sails.js Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1190216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-453-9

www.packtpub.com

Credits

Author
Shaikh Shahid

Reviewer
Diogo Resende

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Sonali Vernekar

Content Development Editor
Siddhesh Salvi

Technical Editor
Manthan Raja

Copy Editor
Vibha Shukla

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Jason Monteiro

Kirk D'Penha

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Shaikh Shahid has been a product developer for over two years. He has the
experience of working on Node.js for more than two years. He loves to spread the
word about Node.js and its various packages via his programming blog. Shahid
is also very interested in software architecture and design and loves to develop
software system from the core.

When he is not playing with Node.js or helping people, he watches movies, reads
books, or travels to Goa.

I'd like to thank my father, who was not aware of my experiments
with Node.js and similar things during my college days, and
supported me at every step. I'd also like to thank Ashutosh sir
and Jane for giving me an opportunity to work professionally
on this awesome technology.

About the Reviewer

Diogo Resende is a passionate developer, obsessed with perfection in everything
he works on. He loves everything about the Internet of Things: the ability to connect
everything together and always being connected to the world. He is also the author
of Node.js High Performance, Packt Publishing.

Diogo Resende studied computer science and graduated in engineering, which
deepened his knowledge about computer networking and security, software
development, and cloud computing. In the past 10 years, he has embraced different
challenges to develop applications and services to connect people with embedded
devices around the world, creating a bridge between the ancient and uncommon
protocols and the Internet of today.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 v
Chapter 1: Revisiting Node.js Concepts	 1

Node.js architecture	 2
V8	 2
Event driven I/O – libuv	 2

Single-threaded system and its working	 3
Working of libuv – core of Node.js	 3
Multi-threading versus single-threading	 4

Event loop and non-blocking I/O model	 5
Importance of event loop	 5
Working of event loop	 6

Summary	 7
Chapter 2: Developing Node.js Web Server	 9

Working of web servers	 9
HTTP operations and their use	 10

Create	 10
Read	 10
Update	 10
Delete	 10

Developing web server using HTTP module	 11
HTTP headers and content-type	 12
Developing web server using Express	 12

Using Express to develop web server	 12
Routers and middleware	 16

Summary	 17

Table of Contents

[ii]

Chapter 3: Introduction to Sails.js and MVC Concepts	 19
Getting started with MVC concepts	 19

Model	 20
View	 20
Controller	 20

Installing Sails.js	 21
Understanding directory structure of Sails.js project	 22

The assets directory	 23
The views directory	 23
The node_modules directory	 23
The api directory	 23
The config directory	 24

Adding database support	 25
Configuring MySQL database with Sails.js	 25

config/connections.js	 26
config/models.js	 26

Configuring MongoDB database with Sails.js	 26
config/connections.js	 27
config/models.js	 27

Configuring the Grunt task runner file with JSHint	 27
Summary	 29

Chapter 4: Developing REST API Using Sails.js	 31
Why it is called REST?	 31
The REST CRUD operation	 32
Database design for REST API	 32
Building REST API in Sails.js	 33

config/connections.js	 34
config/models.js	 34
Discussing migrate key	 34
Running our code	 35

Create new message	 35
Read the message	 37
Update the message	 38
Delete the message	 39

Defining custom controller	 40
api/controllers/MessageController.js	 40

Summary	 40
Chapter 5: Build a Chat System Using Sails.js	 41

Application architecture and flow	 42
Creating a Sails.js app	 42

Table of Contents

[iii]

Sails.js API for chat	 44
Model definition and MySQL integration in the app	 44
Sails.js controller to handle the chat operation	 46
AngularJS app for client-side interaction	 47
Running the application	 52
Summary	 54

Chapter 6: Building a Real-Time News Feed App Using Sails.js	 55
Briefing Socket.IO	 56
Using Socket in Sails.js	 56
Discussing the database design of the app	 57
Implementing the application	 58
Summary	 66

Chapter 7: Creating a TODO Single-Page Application	 67
MongoDB support in Sails.js	 68
Defining model for API	 69
TODO app view design	 72

/assets/js/app.js	 74
/assets/js/services/ToDoService.js	 75

Summary	 77
Chapter 8: Sails.js Production Checklist	 79

Sails.js migrate in detail	 79
Sails.js security checklist	 80

CSRF	 80
CORS	 81
DDOS	 81
XSS	 81

Sails.js deployment checklist	 82
Configure production environment setting	 82
Run app on port 80 if there is no proxy	 82
Configure database settings	 83
Estimate the traffic from all the endpoints	 83

Sails.js hosting	 83
Summary	 83

Index	 85

[v]

Preface
Sails.js Essentials will take you through the basics of Node.js and developing
production-ready application in the Sails.js framework. This book covers interesting
application and their development that will guide you through the practical aspects
of software and development.

What this book covers
Chapter 1, Revisiting Node.js Concepts, takes you through some core concepts of
Node.js and its working before we dive into the Sails.js and MVC concepts.

Chapter 2, Developing Node.js Web Server, explain how servers are built in Node.js.
Throughout this book, we will deal with various web servers. Sails.js has an internal
web server that is already written for production.

Chapter 3, Introduction to Sails.js and MVC Concepts, covers MVC concepts in brief and
begins with the Sails.js installation and configuration.

Chapter 4, Developing REST API Using Sails.js, comes up with tools to build REST API
faster and easier. REST APIs are essential building blocks of any web application.

Chapter 5, Build a Chat System Using Sails.js, covers how to develop a chat system
using Sails.js. A chat system is very generic application across web applications.

Chapter 6, Building a Real-Time News Feed App Using Sails.js, teaches how to develop
basic news feed app using Sails.js. Facebook and Twitter have very nice news feeds,
which are updated as soon as a new status is needed.

Preface

[vi]

Chapter 7, Creating a TODO Single-Page Application, covers how to develop a TODO
application using Sails.js. TODO application needs no introduction as it's a famous
application.

Chapter 8, Sails.js Production Checklist, covers how to choose Sails.js hosting and some
tweaks and settings before hitting the deploy button.

What you need for this book
A computer with a generic operating system (Mac, Windows, or Linux) having
capability to run Node.js and npm (node package manager).

Who this book is for
This book targets web developers, who want to build web apps with Sails.js.

Proficiency with JavaScript and Node.js is assumed along with familiarity of web
development concepts. Familiarity with the MEAN (MongoDB, Express, AngularJS,
and Node.js) stack is an added advantage.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can validate the same concept using the setTimeout() function."

A block of code is set as follows:

console.log("i am first");
setTimeout(function timeout() {
 console.log("i am second");
}, 5000);
console.log("i am third");

Preface

[vii]

Any command-line input or output is written as follows:

npm install sails -g

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now, hit
the Send button and see the response."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/SailsjsEssentials_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://www.packtpub.com/sites/default/files/downloads/SailsjsEssentials_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/SailsjsEssentials_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Revisiting Node.js Concepts
Node.js—the game changer of server-side programming—is becoming popular
day by day. Many popular frameworks such as Express.js, Sails.js, and Mean.io
are developed on top of Node.js and software giants such as Microsoft, PayPal, and
Facebook are shipping the production-ready applications that are stable like a rock!

You might be aware about the approach that Node.js used, such as the event-driven
programming, single-thread approach, and asynchronous I/O. How does Node.js
really work? What's its architecture? How does it run asynchronous code?

In this chapter, we will see the answers to the preceding questions and cover the
following aspects of Node.js:

•	 Node.js architecture
•	 Single-threaded system and its working
•	 Event loop and non-blocking I/O model

Revisiting Node.js Concepts

[2]

Node.js architecture
We all know that Node.js runs on top of V8—Chrome runtime engine—that compiles
the JavaScript code in the native machine code (one of the reasons why Google
Chrome runs fast and consumes a lot of memory), followed by the custom C++
code—the original version has 8,000 lines of code (LOC)—and then, the standard
libraries for programmers. The following is the figure of Node.js architecture:

JavaScript

Standard Libraries

Binding Libraries

V8 libeio DNS

-Architecture

libev libuv

V8
The V8 JavaScript engine is an open source JavaScript engine developed for the
Chrome project. The innovation behind V8 is that it compiles the JavaScript code
in native machine code and executes it. The developers used the just-in-time (JIT)
compiler methodology to improve the code compilation time. It is open source and is
used in the Node.js and MongoDB project.

Event driven I/O – libuv
The libuv library is a cross platform library that provides an asynchronous I/O
facility by enabling an event-driven I/O operation. The libuv library creates a thread
for the I/O operation (file, DNS, HTTP, and so on) and returns callback. Upon
completion of the particular I/O operation, it returns the events so that the callee
program does not have to wait for the completion of I/O operation. We will see more
about libuv in the upcoming sections.

Chapter 1

[3]

Single-threaded system and its working
Unlike Java, PHP, and other server-side technologies, Node.js uses single-threading
over multi-threading. You might wonder how can a thread can be shared across a lot
of users concurrently? Consider that I have developed a web server on Node.js and
it is receiving 10,000 requests per second. Is Node.js going to treat each connection
individually? If it does so, the performance would be low. Then, how does it handle
concurrency with a single-thread system?

Here, libuv comes to the rescue.

Working of libuv – core of Node.js
As we mentioned in the previous section, libuv assigns threads for the I/O operation
and returns the callback to the callee program. Therefore, Node.js internally creates
threads for I/O operation; however, it gives the programmer access to a single
runtime thread. In this way, things are simple and sweet:

HTTP

File O/P

DNS

libuv Thread

Thread

O.S.

Request

callback
Working of libuv

Thread

When you make an HTTP request to web server running over Node.js. It creates
the libuv thread and is ready to accept another request. As soon as the events are
triggered by libuv, it returns the response to user.

The libuv library provides the following important core features:

•	 Fully featured event loop
•	 Asynchronous filesystem operations
•	 Thread pool

Revisiting Node.js Concepts

[4]

•	 Thread and synchronization primitives
•	 Asynchronous TCP and UDP sockets
•	 Child process
•	 Signal handling

The libuv library internally uses another famous library called libeio, which
is designed for threading and asynchronous I/O events and libev, which is
a high-performance event loop. Therefore, you can treat libuv as a package
wrapper for both of them.

Multi-threading versus single-threading
Multi-threading approach provides parallelism using threads so that multiple
programs can simultaneously run. With advantages come the problems too; it is
really difficult to handle concurrency and deadlock in a multi-threading system.

On the other hand, with single-threading, there is no chance of deadlock in the
process and managing the code is also easy. You can still hack and busy the event
loop for no reason; however, that's not the point.

Consider the following working diagram that is developed by StrongLoop—one
of the core maintainers of Node.js:

Multi-Threaded Server

Request

Request

Request

Request

Threaded WaitingThread Processing

Blocking IO

Thread Pool

Chapter 1

[5]

Node.js uses single-threading for runtime environment; however, internally, it does
create multiple threads for various I/O operations. It doesn't imply that it creates
threads for each connection, libuv contains the Portable Operating System Interface
(POSIX) system calls for some I/O operations.

Multi-threading blocks the I/O until the particular thread completes its operation
and results in an overall slower performance. Consider the following image:

Node.js Server

Request

Request

Request

Request

Threaded WaitingThread Processing

Non-
Blocking IO

Event
Loop POSIX

Async
Threads

Single
Thread

Delegate

If the single-threading programs work correctly, they will never block the I/O and
will be always ready to accept new connections and process them.

Event loop and non-blocking I/O model
As shown in the previous diagram, I/O does not get blocked by any thread in
Node.js. Then, how does it notify to particular processes that the task has been
done or an error has occurred? We will look at this in detail in this section.

Importance of event loop
Node.js is asynchronous in nature and you need to program it in an asynchronous
way, which you cannot do unless you have a clear understanding of event loop. If
you know how the event loop works, you will no longer get confused and hopefully,
never block the event loop.

Revisiting Node.js Concepts

[6]

Working of event loop
The Node.js runtime system has execution stack, where it pushes every task that
it wishes to execute. Operating system pops the task from the execution stack and
conducts the necessary action required to run the task.

To run the asynchronous code, this approach won't work. The libuv library
introduces queue that stores the callback for each asynchronous operation. Event
loop runs on specific interval, which is called tick in the Node.js terminology, and
check the stack. If the stack is empty, it takes the callback from queue and pushes it
in the stack for execution, as shown in the following figure:

Node
Runtime

Stack

Event loop

(Event loop)

Queue

Node
Program

The libuv library creates the thread and returns the callback to us. As it's an
asynchronous operation, it goes to queue instead of the stack and the event loop
fetches it when the stack is empty and does the execution.

You can validate the same concept using the setTimeout() function.

Consider the following code:

console.log("i am first");

setTimeout(function timeout() {
 console.log("i am second");
}, 5000);

console.log("i am third");

Chapter 1

[7]

If you run the previous code, you will get an output similar to the following:

i am first
i am third
i am second

The reason is obvious, setTimeout() waits for five seconds and prints its output;
however, that does not block the event loop.

Let's set the timer to 0 seconds and see what happens:

console.log("i am first");

setTimeout(function timeout() {
 console.log("i am second");
}, 0);

console.log("i am third");

The output is still the same:

i am first
i am third
i am second

Why so? Even if you set the timer to 0, it goes in the queue; however, it is
immediately processed as its time is 0 second. The event loop recognizes that the
stack is still not empty, that is, third console was in process; therefore, it pushes the
callback after the next tick of event loop.

Summary
In this chapter, we discussed the architecture of Node.js, followed by its internal
components: V8 and libuv. We also covered the working of event loop and how
Node.js manages the performance improvement using single-thread processing.

In the next chapter, we will take a look at the development of the Node.js server
using core modules as well as the Express web framework.

[9]

Developing Node.js
Web Server

Node.js comes up with a web server module, which is in the binding section of its
architecture. It provides you the necessary tools to build your own efficient web
server that runs with single thread mechanism. With nearly any web application;
you need web server to serve your application to public/private requests.

In this chapter, we will discuss the following points.

•	 Working of web servers
•	 HTTP operations and their uses
•	 Developing web server using HTTP module
•	 Developing web server using Express

Working of web servers
Web servers are computers with powerful configuration, sitting somewhere in secure
private zone, serving web pages to you. When you enter any Uniform Resource
Locator (URL), there are some processes that take place in the background and
take time depending on your bandwidth and other factors. What are these steps?
How does the browser fetch these pages as soon as you enter a URL? Here is what
happens internally:

1.	 When you enter a URL, your browser will first send a request to name server,
which does the task of translating that domain name to the server IP address
(it could also be a proxy).

2.	 Then, the browser sends an HTTP/GET request to port 80 of that IP address.

Developing Node.js Web Server

[10]

3.	 Web server receives the GET request and delivers the file (usually HTML) to
the browser and the browser renders it to your display. This happens every
time you send a request.

This whole operation is performed by the HTTP and TCP/IP protocol. TCP/IP does
the network-level task, while HTTP mainly deals with serving request/response.
You might be aware of Apache and NGINX—two of the most famous servers of all
time. Well, now it's time to develop our own server!

HTTP operations and their use
HTTP provides various request types such as GET, POST, PUT, DELETE, and
HEAD. Each of the request types is designed to provide a certain kind of operation.
You may have heard of the create, read, update, and delete (CRUD) operations for
various sites and programming blogs. Therefore, let's map these CRUD operations
to our HTTP request types.

Create
The create operation generates some new data at the server end. The POST HTTP
operation is meant to use when we are generating data. Therefore, in case you want
to create a new user or message, you should use POST.

Read
The read operation is directly mapped to the GET operation of HTTP. You should
always use the GET request type to read anything from the server. Whether it is for
every set of data or a particular one, use GET.

Update
To update any existing data in the server, you should use the PUT HTTP operation.
PUT is quite similar to the POST operation; however, its internal working is quite
different. You can use this to perform update of any particular data in server.

Delete
This is directly mapped to the DELETE HTTP operation. You can either delete
everything or particular information based on your requirement. The DELETE
operation works with the PARAMS, URL-encoded data as well as JSON-encoded
data.

Chapter 2

[11]

Developing web server using HTTP
module
HTTP is the core module of Node.js. We can use this module to develop our custom
web server, which can accept requests from different HTTP request types and send
response to them with various headers. The following is the basic code snippet of a
very simple web server in Node.js:

var http = require("http");
http.createServer(function(req,res){
 res.writeHead(200,{'Content-type' : 'text/html'});
 res.end("<h1>Hello World</h1>");
}).listen(3000);
console.log("Listening at Port 3000");

When we execute the preceding program and visit localhost:3000 to view the app,
we get the following output:

You can define more HTTP operations and paths for your server, which we refer to
as routes in this book. For example, in the http://www.example.com/about URL,
/about is the route.

We will not go much deeper in it as we will be using Sails.js that has a built-in
efficient server. Let's consider some of the HTTP headers and content-type to
understand the upcoming examples easily.

http://www.example.com/about

Developing Node.js Web Server

[12]

HTTP headers and content-type
HTTP is a flexible protocol and provides interface to deal with the various kinds of
data, such as text, HTML, XML, images, and so on. To support all of them in various
HTTP operations, it has predefined set of headers and content-type.

Headers are basically an indicator of what kind of data is send to the client. It can be
send to the client before sending the actual data so that the browser is ready to accept
this format of data.

For example, consider the following:

•	 To send an HTML response to the client, we need to set following header:
res.writeHead(200,{'Content-type' : 'text/html'});

•	 To send a JSON or XML response to the client, we need to set the following
header:

res.writeHead(200,{'Content-type' : 'application/json});

res.writeHead(200,{'Content-type' : 'application/xml});

Developing web server using Express
Express is a web development framework built on top of Node.js. Express is also the
core module used in developing Sails.js. Before getting into the detail of Sails.js, let's
briefly go through Express.

Using Express to develop web server
Let's develop our web server using Express. The following is a sample package.
json:

{
 "name": "expressServer",
 "version": "0.0.1",
 "dependencies": {
 "express": "^4.13.3"
 }
}

Chapter 2

[13]

Switch to the project directory and run the npm install command in order to install
Express in the project. Let's develop our basic server file, as follows:

// load express module.
var express = require("express");
var app = express();
// Always use express inbuilt router.
var router = express.Router();

router.get('/',function(req,res){
 // Express determines the common header type.
 res.end("<h1>Hello World</h1>");
});

// This will navigate all router to proceed /home
app.use('/home',router);

app.listen(3000);

console.log("Listening at Port 3000");

Run the project using the node Server.js command and you will be able to see the
following on the console:

Developing Node.js Web Server

[14]

Open your browser and type localhost:3000/home in the browser. Notice how
/home renders the first route:

You can also send HTML files as a response. All you need is to create the HTML
file in the project directory and provide an absolute path in the res.sendFIle()
function.

Here is the code snippet of the HTML file:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Home page</title>
 </head>
 <body>
 <div id="home">
 <h1>Hello World</h1>
 <h3>I am sent as HTML response to you.</h3>
 </div>
 </body>
</html>

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[15]

I am sure that you are familiar with the basic syntax of HTML. This is just a simple
div with heading tags. Take a look at the following modified server file:

var express = require("express");
var app = express();
var router = express.Router();

router.get('/',function(req,res){
 // __dirname will provide the location of project directory.
 res.sendFile(__dirname + '/index.html');
});

app.use('/home',router);

app.listen(3000);

console.log("Listening at Port 3000");

Restart the server and visit the same URL. To restart, terminate it from the terminal
and run it again. In the upcoming tutorials, we will be using nodemon, which will
automatically restart our program in case of any changes.

You will see the following output:

Developing Node.js Web Server

[16]

Routers and middleware
We have seen router and how to use it to control web applications. However, there
maybe a scenario where we need to execute a piece of code for every router. Of
course, you can either write this code everywhere or maintain it as a function call.
However, for both the methods, extra code needs to be written for every route.

Here, middleware comes to the rescue. Middleware is also termed code injection
in software architecture, where we write a piece of code in such a way that it is
executed every time. For example, consider a situation where you want to check the
route the user is calling and its type, such as GET, POST, and so on.

Therefore, instead of writing the code for every router, consider the following code
to see what you can do:

app.use(function(req,res,next) {
 console.log("Route is "+ req.path + " and type is "+req.method);
 next();
});

Place this in the Server.js file and and watch the console. Express will run this
every time before hitting to any other router. Here is the Server code:

var express = require("express");
var app = express();
var router = express.Router();

router.get('/',function(req,res){
 res.sendFile(__dirname + '/index.html');
});
app.use(function(req,res,next) {
 console.log("Route is "+ req.path + " and type is "+req.method);
 // next will pass the execution to next middleware or router.
 next();
});
app.use('/home',router);

app.listen(3000);

console.log("Listening at Port 3000");

Chapter 2

[17]

Run the code again, enter the same URL in the browser, and check the console, as
shown in the following screenshot:

Summary
We covered the basics of a Node.js web server and its development using Express.
You learned how to use middleware in Express to write less redundant code.
In the next chapter, we are going to begin learning Sails.js, starting with the
installation, understanding the directory structure, and configuring our development
environment.

[19]

Introduction to Sails.js
and MVC Concepts

Sails.js is a web framework designed to help developers produce scalable
production-ready web applications at a fast pace. It follows the familiar
Model-View-Controller (MVC) pattern that is adopted by Active Server Pages
(ASP), Ruby on Rails, and so on to develop applications. With built-in data flow
support, API generation and many more, Sails.js is one of the first choice to develop
a web application using Node.js, especially real-time applications such as chat
system or multi-player game.

In this chapter we'll cover the following topics:

•	 Getting started with MVC concepts
•	 Installing Sails.js
•	 Understanding directory structure of Sails.js project
•	 Adding database support
•	 Configuring the Grunt task runner file with JSHint

Getting started with MVC concepts
We know that MVC is a software architecture pattern coined by Smalltalk engineers.
MVC divides the application into three internal component and data gets passed via
each components. Each component is responsible for their task and they pass their
result to the next component. This separation provides a great opportunity of code
reusability and loose coupling.

Introduction to Sails.js and MVC Concepts

[20]

Model
The main component of MVC is model. Model represents knowledge, it could be
single object or nested structure of objects. The model directly manages the data
(stores the data as well), logic, and rules of the application.

View
View is a visual representation of model. View takes the data from model and presents
it (in a browser or console). View gets updated as soon as the model is changed. An
ideal MVC application must have a system to notify other components about the
changes. In web application, view is the HTML that we present in a web browser.

Controller
As the name implies, task of controller is to accept input and convert it to a proper
command for model or view. Controller can send commands to model in order to
make changes or update the state. It can also send commands to view to update the
information.

For example, consider Google Docs to be an MVC application. View will be the
screen, where you type. As you can see in the defined interval, it automatically saves
the information in the Google server, which is controller that notifies model (Google
backend server) to update the changes.

ControllerModel View

As you can see in the preceding diagram, let's once again consider Google Docs as an
example, where Google database is the Model. As soon as you open Google Docs, the
view gets loaded in the browser. As soon as you start typing, the controller wakes
up and notifies the model that there is a change in view and the model updates its
information with whatever you have typed.

When you load Google Docs again, the controller requests data from the model and
passes it to the view to present it in the browser.

Chapter 3

[21]

Installing Sails.js
Make sure that you have Node.js and npm installed in your system. At the time of
writing this book, the available version of stable Node.js is 4.2.1 and npm is 2.14.7.

Open the terminal and run the following command to install Sails.js:

npm install sails -g

You may need to provide sudo access if you are using Mac or Linux. It may take a
while, depending on your Internet connection.

Once it is installed, you can check whether it went correctly by running the sails
command in terminal, as shown in the following screenshot:

Introduction to Sails.js and MVC Concepts

[22]

Understanding directory structure of
Sails.js project
Let's create a new sails project. Run the following command in the terminal:

sails new <projectName>

Sails will create a default project with all the folders such as view, controllers,
and so on. Just switch to the project directory and list all the files. Here is how the
directories look like using the tree command:

├── api

│ ├── controllers

│ ├── models

│ ├── policies

│ ├── responses

│ └── services

├── assets

│ ├── images

│ ├── js

│ │ └── dependencies

│ ├── styles

│ └── templates

├── config

│ ├── env

│ └── locales

├── node_modules

│ ├── ejs

│ ├── grunt

Chapter 3

[23]

│ ├── grunt-contrib-clean

│ ├── rc

│ ├── sails

│ └── sails-disk

├── tasks

│ ├── config

│ └── register

└── views

The assets directory
This directory contains the static files such as image, HTML, JavaScript, and so on.
In Express.js, we need to define the static path using the express.static code. In
Sails.js, it will automatically do this for you. Just place the files that you want to serve
as static in the assets directory and you are good to go!

The views directory
As the name suggests, it contains the files that we need to serve to the web browser.
In Sails.js, by default, it is the Embedded JavaScript (EJS) templates file and you
can also change this. Sails.js already has the ability to parse and render the EJS file;
therefore, you do not need to add any view engine like we do in Express.

The node_modules directory
Sails.js uses various node modules to perform its task. It also includes the Grunt and
sails-disk (to use disk as database storage) module by default. You can also include
various modules if you need and they will also be stored in this directory.

The api directory
This is the most important directory of the Sails.js project. This directory contains
the code of controller and model, and things associated with them such as policies,
services, and so on.

Introduction to Sails.js and MVC Concepts

[24]

The config directory
This is another important folder of the Sails.js project. Sails.js creates application in
the standard assumption of application and it is flexible. You can change the default
settings that Sails.js assume to be good for your app and make it the way you want.
Some of the important files are as shown in the following:

•	 connections: This configures the database adapter
•	 bootstrap.js: This is the code that runs before the application
•	 local.js: This contains the language information
•	 policies.js: This is the user's policies management
•	 routes.js: This is the place where front-end routes are written
•	 views.js: This is the setting for the views

To run the app, you need to type sails lift in the terminal and visit
localhost:1337 from the browser, as shown in the following screenshot:

Chapter 3

[25]

The default application looks similar to the following screenshot in the browser:

Adding database support
Sails.js supports every major database and provides official adapters for them. By
default, when you create new project, it uses disk as a database engine that we can
change by editing some code in config/connections.js and config/models.js.

Configuring MySQL database with Sails.js
First of all, we need to install the official MySQL adapter for Sails.js called sails-
mysql. You can install it via npm in your project by running the following command:

npm install --save sails-mysql

Once the installation is done. You need to provide the MySQL credentials in
config/connections.js in order to let Sails.js make connection to database and
then provide that connection in config/models.js to tell Sails.js which connection
and database provider to use for the application.

Introduction to Sails.js and MVC Concepts

[26]

config/connections.js
Consider the following code of the config/connections.js file:

module.exports.connections = {
 mysqlAdapter: {
 adapter: 'sails-mysql',
 host: 'localhost,
 user: 'root',
 password: '',
 database: 'sampleDB'
 }
};

config/models.js
The following is the content of the config/models.js file:

module.exports.models = {
 connection: 'mysqlAdapter'
};

This is it. We have added the MySQL support in our Sails.js project. Now, you can
run various queries and fetch results from the MySQL database in a standard way.

Let's look over the MongoDB connection.

Configuring MongoDB database with Sails.js
MongoDB is one of the fastest growing NoSQL database and has been widely used
in many web applications. Sails.js provides support for MongoDB as well. You need
to install the official sails-mongo module and use it in the same way we did for
MySQL using the following command:

npm install --save sails-mongo

Once the installation is done. You need to provide the MySQL credentials in config/
connections.js and then tell Sails.js to use them in config/models.js.

Chapter 3

[27]

config/connections.js
The following is the content of the config/connections.js file:

module.exports.connections = {
 mongoAdapter: {
 adapter: 'sails-mongo',
 host: 'localhost',
 port: 27017
 }
};

This is the minimal setting you will need; however, you can provide username,
password, and database name if you have them at hand.

config/models.js
The following is the content of the config/models.js file:

module.exports.models = {
 connection: 'mongoAdapter'
};

This is it for MongoDB as well. You can also add Postgres database support in
similar manner. Sails.js is adaptable to any new database. You can use the connection
name across the project to get/set new connections, fire query, and so on.

Configuring the Grunt task runner file
with JSHint
One of the weakest points of JavaScript is its lack of compile-time debugging.
Luckily, there are ways to achieve this. JSHint is a popular framework that does
this task, that is, finds the compile-time errors in JavaScript code.

Sails.js uses Grunt as its default task runner and also comes up with default tasks
such as building, concatenate JS and CSS files, and so on. You can run various tasks
in Grunt. When you run the Sails.js project using sails lift, it runs the default task
of Grunt by default.

Introduction to Sails.js and MVC Concepts

[28]

Therefore, we need to add the JSHint task in a default task of Grunt so that whenever
we lift our Sails.js app, it checks our code. First of all, we need to install the JSHint
module via npm, as follows:

npm install grunt-contrib-jshint --save-dev

Once it is installed, we need to create a new jshint.js filename in the tasks/
config folder. This folder contains all the tasks that Grunt has to run. The code for
this is as follows:

module.exports = function(grunt) {
 grunt.config.set('jshint', {
 jshint : {
 myFiles : ['../../api/controllers/**/*.js']
 }
 });
 grunt.loadNpmTasks('grunt-contrib-jshint');
};

You can add more files in the code. Once the task file is created, we need to register
the task (that is, jshint) in the default.js file present in the config/register
folder. By default, the file will look similar to the following:

module.exports = function (grunt) {
 grunt.registerTask('default', ['compileAssets', 'linkAssets',
 'watch']);
};

After adding the jshint task, the file will look similar to the following:

module.exports = function (grunt) {
 grunt.registerTask('default', ['jshint','compileAssets',
 'linkAssets', 'watch']);
};

Chapter 3

[29]

Now, if you run the grunt command in the terminal, JSHint will run first, as shown
in the following screenshot:

For the sake of clarity and a clean terminal, I have commented other tasks in
default.js.

Summary
We covered the important points of MVC and installation and configuration of
Sails.js in our system. You learned how to add database support in Sails.js
and configure the Grunt task runner. In the next chapter, we will explore the
development of representational state transfer (REST) API using Sails.js.

[31]

Developing REST API
Using Sails.js

Representational state transfer (REST) is a software architectural style for the
World Wide Web. REST APIs that use HTTP verbs as operational methods are called
RESTful APIs. REST API is one of the important concept and it is very useful for web
and mobile application due to its flexibility, adaptability, and uniformity.

In this chapter, we will cover the following topics:

•	 Why it is called REST?
•	 REST CRUD operation
•	 Database design for REST API
•	 Building REST API in Sails.js

Why it is called REST?
The name REST actually technically explains that the client initiates the transfer of
representation of server state. What this really means is that unlike a web service,
where we request the server to do something and the operation is not dependent on
the type of HTTP verb, REST explains the operation by its HTTP verb and endpoint
explains what actually happens.

Developing REST API Using Sails.js

[32]

The REST CRUD operation
CRUD is the create, read, update, and delete operation that is a common proof of
a concept for any REST API. We will achieve the same using our Sails.js REST API.
Before that, we need to choose where we should perform this CRUD operation. We
will first use the MySQL database as the point to perform our CRUD operation.

In REST, we need to make sure that HTTP verbs (GET, POST, PUT, DELETE, and
so on) give the clear explanation of their operation. For example, the GET /message
should represent that we are trying to extract the messages. It shouldn't be GET /
getallmessage, which leads to ambiguity in understanding the REST operation.

Database design for REST API
Let's design a simple database to handle raw text messages. Therefore, message is
the object on which we are going to perform the CRUD operation using the REST
approach. To simplify this, let's use the following two fields:

•	 e-mail or username
•	 message

Create a database in MySQL via phpMyAdmin or command prompt and then create
the preceding table with two fields. Here is the SQL query for reference:

CREATE SCHEMA IF NOT EXISTS `sailsApi` DEFAULT CHARACTER SET latin1 ;

CREATE TABLE IF NOT EXISTS `sailsApi`.`message` (

 `email` VARCHAR(255) NULL DEFAULT NULL COMMENT '',

 `message` VARCHAR(255) NULL DEFAULT NULL COMMENT '',

 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '',

 `createdAt` DATETIME NULL DEFAULT NULL COMMENT '',

 `updatedAt` DATETIME NULL DEFAULT NULL COMMENT '',

 PRIMARY KEY (`id`) COMMENT '')

Chapter 4

[33]

Building REST API in Sails.js
Let's create a new Sails.js project and develop our first Sails.js API. To create a new
project, use the following command:

sails create <projectName>

To create a new API in Sails.js, you have the following two ways:

•	 Create model and controller manually
•	 Allow Sails.js to create them automatically

I will go for the second method as it's fairly simple and system-generated files are
less prone to errors; therefore, you don't have to waste your time debugging these
files. However, at the end of this chapter, we will take a look at the first method as
well.

To create a new API, just execute the following command from the terminal in the
project directory:

sails create api Message

This is it. We created a skeleton of our API by executing this command. Now, let's
take a look at the changes made by this command to our project.

If you traverse to the models and controllers directory of the project, you will see
new files created: Message.js in the models directory and MessageController.js
in the controllers directory. For API, no view will be created.

Before taking a look over these files. Let's first configure our database that we are
going to use for API. We will use MySQL as the database storage and, like we
discussed in the last chapter, we need to edit config/connections.js and config/
models.js to connect Sails.js to the database engine.

Before editing these files, create one database in MySQL with a name of your choice.
If you have phpMyAdmin installed, you may need to visit localhost/phpmyadmin
from the browser and create a new database. You can also do this via command line.

Assuming that you have created the database, let's connect to it using our Sails.js.
First, let's define the connection parameter. We also assume that you have sails-
mysql installed in your project, if not, do it using the following command in the
project directory:

npm install --save sails-mysql

Developing REST API Using Sails.js

[34]

config/connections.js
Consider the following code of the config/connections.js file:

module.exports.connections = {
 mysqlAdapter: {
 adapter: 'sails-mysql',
 host: 'localhost',
 user: 'root',
 password: '',
 database: 'sailsApi'
 }
};

config/models.js
Add the connection variable to your config/models.js file, as follows:

module.exports.models = {
 connection: 'mysqlAdapter',
 migrate: 'safe'
};

We have defined the connection in the models.js file with the migrate parameter.
Let's take a look at what this actually is.

Discussing migrate key
The migrate key controls and informs Sails.js whether to create/rebuild schema,
collection, tables, and so on. In Node.js production environment, it is recommended
and Sails.js uses migrate as safe, which basically means that the developer has to
manually create tables, schema, collection, and so on.

However, for development and learning purpose, you can also use other options
shown in the following:

•	 migrate: 'safe': Developer should manually create database, table, and
collection

Chapter 4

[35]

•	 migrate: 'alter': Automatic table, schema, and collection creation;
however, keep the existing data

•	 migrate: 'drop': Drop the schema each time and rebuild it when you lift
the Sails.js app

For sake of practice and developing code for production, we will use migrate as safe
only throughout this book.

Running our code
To run our code, type the following command in the terminal:

sails lift

Your app will be running on localhost:1337. Let's test it. We need to run the
following test cases:

•	 Create new message
•	 Read the message
•	 Update the message
•	 Delete the message

Create new message
You can use any REST simulator program to do the API testing. We recommend the
Postman chrome extension. You can get it for free from the Chrome Web Store. It's
really handy and useful.

To create a new message, select the method of request as POST and type http://
localhost:1337/message in endpoint. Then, go to the Body section and select the
raw radio button and provide the following JSON data:

{
 "email" : "test@book.com",
 "message" : "Hi this is first message of APIs"
}

http://localhost:1337/message
http://localhost:1337/message

Developing REST API Using Sails.js

[36]

Here is the screenshot of creating new message by API using Postman
(API simulator) chrome app:

Now, hit the Send button and see the response. It should be something similar to the
following:

{
 "email": "test@book.com",
 "message": "Hi this is first message of APIs",
 "createdAt": "2015-11-03T16:52:50.497Z",
 "updatedAt": "2015-11-03T16:52:50.497Z",
 "id": 2
}

You will also notice the 201 HTTP header, which is as per the HTTP standard for
creation. Now, let's take a look at the database records.

Chapter 4

[37]

Visit phpMyAdmin from the browser and choose the database that you have created.
You will be able to see the preceding record present there, as shown in the following
screenshot:

Read the message
We have two options to read our database records, as follows:

•	 Read all at once
•	 Read specific message

To read all the messages from the database, just change the HTTP method to
GET and hit the Send button. You should be able to see all the messages from the
database.

Developing REST API Using Sails.js

[38]

To read specific messages, you need to provide id of the record. The URL to enter
will look similar to the following:

http://localhost:1337/message/:id {1, 2, and so on}

Let's fetch the record for user ID 1. Here is the request screenshot of Postman:

Update the message
We will use the /PUT method to update the existing records in our database. Again,
we need to pass the specific ID of the message that we wish to update. We cannot
update all the records at once.

Therefore, we need to hit the URL with the ID of the record and pass the JSON data
like we did in the Create new message section. The following is the request screenshot
of Postman:

Chapter 4

[39]

You can validate the data by fetching the same record from DB using the GET request.

Delete the message
To delete the message, you need to use the /DELETE HTTP method and pass the ID
of data that you wish to delete. Again, here you cannot delete all the data at once. To
perform the delete operation, refer to my request Postman screenshot:

Developing REST API Using Sails.js

[40]

Defining custom controller
You can also provide custom controller that can be called via the URL. To define
custom controller, you need to edit the api/controllers/MessageController.js
file and add the custom function. You can call the controller by providing the custom
function name in the URL, right after the endpoint.

api/controllers/MessageController.js
The following is the content of the api/controllers/MessageController.js file:

module.exports =
{
 hi: function (req, res) {
 return res.send("Hi there!");
 },
 bye: function (req, res) {
 return res.redirect("http://www.google.com");
 }
};

Here hi and bye are specific controllers that can be called by hitting the http://
localhost:1337/message/hi URL.

Summary
In this chapter, you learned about creating RESTful APIs in Sails.js very easily and
in an effective way. We covered how to connect our Sails.js to external database and
perform CRUD operation on them.

In the next chapter, we will learn how to develop real-world applications using Sails.
js. We will develop a simple and similar Twitter feed, where every connected user
can see tweets in real time.

http://localhost:1337/message/hi
http://localhost:1337/message/hi

[41]

Build a Chat System
Using Sails.js

A chat system is one of the popular applications that we're already familiar
with. Facebook, Google, or any other social media application have implemented
one-to-one chat system, where you can chat with the person to whom you are
already connected.

In this chapter, we will be building a chatting system that is purely connection-
oriented rather than user-oriented. What we mean by this is that we don't require the
user to sign up and provide their information and then find other user to chat with;
all they need to do is come to the web app and start chatting on providing their name
or stay anonymous with their message.

In this chapter, we will cover the following topics:

•	 Application architecture and flow
•	 Creating a Sails.js app
•	 Sails.js API for chat
•	 Model definition and MySQL integration in the app
•	 Sails.js controller to handle the chat operation
•	 AngularJS app for client-side interaction
•	 Running the application

Build a Chat System Using Sails.js

[42]

Application architecture and flow
Our chat application will be connection-oriented, requiring no sign-up or log-in
process. All the user needs to do is open the web application and start chatting in the
group, as we do in Internet Relay Chat (IRC).

The flow of the application will be as follows:

1.	 The user opens the web app and subscribes to the socket connection.
2.	 We fetch the old messages (if any) from the database and show them

to the user.
3.	 The user types in their name or leaves it as Anonymous and types a message.
4.	 Upon submitting the message, a new entry will be made in the database.
5.	 Every user connected to the socket will be notified in order to update

their view.

The following diagram shows the sample architecture:

UI to send
message

Notify new message

Sails.js REST API

MySQL

Creating a Sails.js app
In order to create a new Sails app, just open your terminal and run the following
command:

sails create <app name>

This will create a fresh Sails.js application with default settings. In the next post, we
will use Embedded JavaScript (EJS) templating for view engine; however, for this
post, we will stick to the HTML pages in order to explain you how to use both of
them.

Chapter 5

[43]

To configure HTML as a default view engine in a Sails.js application, we need to
make the following tweak. First, open config/routes.js, where you will see the
following code:

module.exports.routes = {
 /***
 * *
 * Make the view located at `views/homepage.ejs` (or *
 * `views/homepage.jade`, etc. depending on your default view *
 * engine) your home page. *
 * *
 * (Alternatively, remove this and add an `index.html` file in *
 * your `assets` directory) *
 * *
 **

 '/': {
 view: 'homepage'
 }

 /***
 * *
 * Custom routes here... *
 * *
 * If a request to a URL doesn't match any of the custom *
 * routes above, it is matched against Sails route blueprints. *
 * See `config/blueprints.js` for configuration options and *
 * examples. *
 * *
 **

};

In order to make HTML the default routing, simply delete the following code or
comment it out:

//Delete it '/': {
 view: 'homepage'
}

This is it. Now, we can place our HTML files in the /assets folder and Sails.js will
pick it from there.

Build a Chat System Using Sails.js

[44]

Sails.js API for chat
We need API to communicate with the database (model) and view section. Let's
generate one using the following command:

sails generate api <api name>

In our case, the API name is Chat. This will create the model and controller files in
their respective folders. Before moving ahead, let's decide our model and database
design.

Model definition and MySQL integration
in the app
Create a database in MySQL with an appropriate name (for example, chatDemo) and
then create a chat table using the following Data Definition Language (DDL) query:

CREATE TABLE IF NOT EXISTS `chatDemo`.`chat` (

 `user` VARCHAR(255) NULL DEFAULT NULL COMMENT '',

 `message` VARCHAR(255) NULL DEFAULT NULL COMMENT '',

 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '',

 `createdAt` DATETIME NULL DEFAULT NULL COMMENT '',

 `updatedAt` DATETIME NULL DEFAULT NULL COMMENT '',

 PRIMARY KEY (`id`) COMMENT '')

Let's configure our model files. Before doing that, as we are going to use MySQL,
let's add the MySQL adapter of Sails.js. Run the following command in the terminal:

sudo npm install --save sails-mysql

Open config/connections.js and edit the MySQL connection string with the
database details. This should look similar to the following:

module.exports.connections = {
 localDiskDb: {
 adapter: 'sails-disk'
 },

Chapter 5

[45]

 mysqlAdapter: {
 adapter: 'sails-mysql',
 host: 'localhost',
 user: 'root',
 password: '',
 database: 'chatDemo'
 }
};

Now, open config/models.js and add the MySQL adapter. Your code should look
similar to the following:

module.exports.models = {

 connection : 'mysqlAdapter',
 migrate: 'safe'

};

The migrate: 'safe' command means that Sails.js will not create/update/delete
any database-specific operation, that's the programmer's job. However, if you want
Sails.js to do this, set migrate to either alter or drop.

We have configured the database. Now, let's define our API model. Open
/api/Models/Chat.js and add the following code:

module.exports = {
 attributes: {
 user:{
 type:'string',
 required:true
 },
 message:{
 type:'string',
 required:true
 }

 }
};

Build a Chat System Using Sails.js

[46]

Sails.js controller to handle the chat
operation
We have connected MySQL, created our model, and are ready to write our controller
file. Our controller file is responsible for the following actions:

•	 Accepting HTTP requests
•	 Responding to the requests
•	 Calling other services

The following is our controller file in /api/controllers/ChatController.js:

module.exports = {
 index:function (req,res) {
 var data = req.params.all();
 if(req.isSocket && req.method === 'POST') {
 Chat.query('INSERT into `chat` (`user`,`message`) VALUES
 ("'+data.user+'","'+data.message+'")',function(err,rows){
 if(err) {
 sails.log(err);
 sails.log("Error occurred in database operation");
 } else {
 Chat.publishCreate({id: rows.insertId, message :
 data.message , user:data.user});
 }
 });
 } else if(req.isSocket){
 Chat.watch(req.socket);
 sails.log('User subscribed to ' + req.socket.id);
 }
 if(req.method === 'GET') {
 Chat.query('SELECT * FROM `chat`',function(err,rows){
 if(err) {
 sails.log(err);
 sails.log("Error occurred in database operation");
 } else {
 res.send(rows);
 }
 });
 }
 }
};

Chapter 5

[47]

As you can see, we are using the controller endpoint, that is /chat, to add/retrieve
new messages from the database.

When view makes a POST request, we will assume that it is a request to add a new
message to the database. Hence, we will prepare a query and add it to our table.
Once this is successfully done, we will notify every socket using the publishCreate
method.

If the request method is /GET with the socket request, we will add this socket request
to our model using the watch function. Sails.js will subscribe this socket internally to
our model and we can use various methods to notify the user.

If the request method is /GET without the socket request, we will simply get all the
messages from the database and send them to the UI. We will see what to do first—
subscribe to the socket or get the messages—in the next section, where we are going
to write our AngularJS application.

AngularJS app for client-side interaction
Our backend is almost done. We have the API exposed with the database integration.
We need to design our UI now and call these APIs to make it functional.

We will use bootstrap for layout and AngularJS to handle the client-side interaction.
Make sure that you download the bootstrap file from the official site and add it to the
/assets/styles folder.

Here is a rough diagram of UI:

Name Message

All messages

Build a Chat System Using Sails.js

[48]

The following is our Index.html file in the /assets folder:

<!DOCTYPE html>
<html>
 <head>
 <title>Sails Socket Demo - Maangalabs</title>
 <link rel="stylesheet" type="text/css"
 href="/styles/bootstrap.min.css">
 <link rel="stylesheet" type="text/css"
 href="/styles/style.css">
 <link href='https://fonts.googleapis.com/css?family=Open+Sans:
 300,600' rel='stylesheet' type='text/css'>
 </head>
 <body ng-app="socketApp" ng-controller="ChatController">
 <div class="navbar navbar-default navbar-fixed-top">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle=
 "collapse" data-target=".navbar-responsive-collapse">

 </button>
 Chat System V1.0
 </div>
 <div class="navbar-collapse collapse navbar-responsive-
 collapse">
 </div>
 </div>
 <div class="col-md-12" style="padding:100px">
 <table class="table">
 <tr class="chat_message" ng-repeat="chat in chatList |
 orderBy:predicate:reverse | limitTo: 15">
 <td class="col-md-12 td_class">{{ chat.user }} :
 {{ chat.message }}</td>
 </tr>
 </table>
 </div>
 <div class="navbar navbar-inverse navbar-fixed-bottom" >
 <div class="col-lg-12">
 <form class="form_chat">
 <div class="col-lg-4 col-md-3">
 <input type="text" ng-model = "chatUser" class="form-
 control" placeholder="TypeYourNameHere">
 </div>

Chapter 5

[49]

 <div class="col-lg-6 col-md-5">
 <input type="text" ng-model = "chatMessage" class=
 "form-control" placeholder="TypeYourMessageHere">
 </div>
 <button class="btn btn-default col-lg-2 col-md-2"
 ng-click="sendMsg()">Send</button>
 </form>
 </div>
 </div>
 <script type="text/javascript" src="/js/dependencies/
 sails.io.js"></script>
 <script type="text/javascript"
 src="https://ajax.googleapis.com/ajax/libs/angularjs/
 1.2.27/angular.min.js"></script>
 <script type="text/javascript" src="/js/app.js"></script>
 </body>
</html>

Here is our style.css file to add some style to our UI. This file is located in
/assets/style/style.css:

body{
 background: #ededed;
 font-family: 'Open Sans', sans-serif;
}

We are setting the background and font for the body section of the HTML page. For
chat box, we have defined the form controls and are setting their style here, as shown
in the following:

.navbar{
 border-radius: 0px;
}
.form_chat{
 padding:10px;
}
.form-control{
 width: inherit;
}
.chat_message{
 padding: 10px;
 color: #000;
 font-size: 15px;
background: #fff;
 font-family: 'Open Sans', sans-serif;
}

Build a Chat System Using Sails.js

[50]

Bootstrap provides us the basic styling; however, we can overwrite them with
our custom style. Here we are setting the custom styling for the HTML table and
bootstrap layout:

.td_class{
 word-break:break-all;
 padding: 34px;
 padding-bottom: 0px;
 padding-top: 20px;
 border:0;
}
.navbar-brand{
 font-size: 14px;
 font-weight: 600;
 text-decoration: none;
}
.user_name{
 padding-bottom: 0;
 color: #fff;
 font-size: 15px;
}
.col-lg-4,.col-lg-6{
 padding-right: 3px;
 padding-left: 3px;
}

The following is our AngularJS file residing in /assets/js/app.js:

// Defining angular application.
var socketApp = angular.module('socketApp',[]);
// Defining Angular controller.
socketApp.controller('ChatController',['$http','$log','$scope',
 function($http,$log,$scope){
 $scope.predicate = '-id';
 $scope.reverse = false;
 $scope.baseUrl = 'http://localhost:1337'; // API endpoint
 $scope.chatList =[];
 // This function will call the socket endpoint and fetch all the
 messages.
 // Remember Sails provide Socket messages as an endpoint too.
 $scope.getAllMessages = function(){
 io.socket.get('/chat/');
 $http.get($scope.baseUrl+'/chat/')
 .success(function(success_data){

Chapter 5

[51]

 $scope.chatList = success_data;
 $log.info(success_data);
 });
 };
 // Call above function on load of the page to load previous
 chats.
 $scope.getAllMessages();
 $scope.chatUser = "Anonymous"; // Setting default name
 $scope.chatMessage="";

 // This is the event we generate from our backend system.
 // When user send a message, we broadcast that message in order
 to display it to user.
 io.socket.on('chat',function(obj){
 if(obj.verb === 'created'){
 $log.info(obj)
 $scope.chatList.push(obj.data);
 $scope.$digest();
 }
 });
 // Function that gets called upon click of button.
 $scope.sendMsg = function(){
 $log.info($scope.chatMessage);
 // Calling the socket API with POST request to add new message
 in database.
 io.socket.post('/chat/',{user:$scope.chatUser,message:
 $scope.chatMessage});
 $scope.chatMessage = "";
 };
}]);

If you notice, we are subscribing the user to the socket first and then fetching all the
messages from database.

The getAllMessages() function makes the HTTP /GET call to the Chat API that
provides us all the messages (limited to 300 rows) and we apply it to the UI using the
$digest function.

The sendMsg() function makes the POST call to the socket that, in turn, becomes the
HTTP call. If you recall, it will add the new messages to the database and emit the
socket message.

In the socket notification chat, we will update the view using the same $digest
function. By default, the name of the socket messages will be the name of API, that is,
Chat.

Build a Chat System Using Sails.js

[52]

Running the application
To run the application, open the terminal and run the following command:

sails lift

Now, we can visit our application at http://localhost:1337/, as shown in the
following image:

http://localhost:1337/

Chapter 5

[53]

To add a new message, you need to add the name or leave it as it is and type your
message as shown in the following screenshot:

Now, let's test the socket broadcasting. Open two windows and send messages one
after another, as shown in the following image:

Build a Chat System Using Sails.js

[54]

Summary
We covered database integration and AngularJS integration in our Sails.js app. We
also developed a full-fledged connection-oriented chat application in Sails.js. In the
next chapter, we will develop one more interesting application that updates status
across various users in real-time like Twitter.

[55]

Building a Real-Time News
Feed App Using Sails.js

One of the promising and rare feature of Sails.js is its WebSocket integration. When
you create a new Sails.js application, you have completely tested and featured socket
integration. In case you are not aware of the web socket or Socket.IO platform, it's
the revolutionary implementation of socket (old school BSD sockets) into the web,
which allows us to send and receive messages without Ajax.

In this chapter, you will learn how to develop a real-time status updated application
such as Twitter and Facebook, where any update posted by a person will get updated
on their friends' walls. We won't be developing a full-featured application such as
Twitter; however, we will develop its core (WebSocket and Database integration).

You will learn the following topics in this chapter:

•	 Briefing Socket.IO
•	 Using Socket in Sails.js
•	 Discussing the database design of the app
•	 Implementing the app

Building a Real-Time News Feed App Using Sails.js

[56]

Briefing Socket.IO
Socket.IO is a platform that is currently maintained by Automattic, Inc. (owner of
WordPress.com and Akismet) and is open source to all. While writing this book,
Socket.IO is available only for the Node.js application but it will soon be available for
major server-side languages.

You can install Socket.IO in your Node.js project and access it at every phase of
the application such as routes, view, and so on. You can install Socket.IO using the
following command:

npm install socket.io

Use --save to rewrite package.json. Then, you can include it in your server file and
pass the HTTP instance to it. Luckily, we don't need to do anything as Sails.js does
this all for us.

Using Socket in Sails.js
Sails.js integrates Socket by default and provides various wrapper functions to
access or broadcast the Socket messages. If you like to have a look at the Socket.IO
configuration in Sails.js, you can view the sockets.js file in the config folder. Here
is a snippet of the code:

module.exports.sockets = {

 onConnect: function(session, socket) {
 },
 onDisconnect: function(session, socket) {
 },
 transports: [
 'websocket',
 'htmlfile',
 'xhr-polling',
 'jsonp-polling'
],
 adapter: 'memory',
 authorization: false,
 'backwardsCompatibilityFor0.9SocketClients': false,
 grant3rdPartyCookie: true,
 origins: '*:*',
 heartbeats: true,
 'close timeout': 60,
 'heartbeat timeout': 60,
 'heartbeat interval': 25,
 'polling duration': 20,
 'flash policy port': 10843,

Chapter 6

[57]

 'destroy buffer size': '10E7',
 'destroy upgrade': true,
 'browser client': true,
 'browser client cache': true,
 'browser client minification': false,
 'browser client etag': false,
 'browser client expires': 315360000,
 'browser client gzip': false,
 'browser client handler': false,
 'match origin protocol': false,
 store: undefined,
 logger: undefined,
 'log level': undefined,
 'log colors': undefined,
 'static': undefined,
 resource: '/socket.io'
};

You don't need to understand all the settings right now; however, it is quite an
important file. You can see that there are various switches provided to enable or
disable a particular feature of Socket in Sails.js.

Discussing the database design of the
app
Database design is quite simple. We need to store the status and the name of the user
that posts it as well. Here is simple structure of the database:

Building a Real-Time News Feed App Using Sails.js

[58]

The following is the SQL script for the database:

CREATE TABLE IF NOT EXISTS `sailsApi`.`message` (

 `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '',

 `name` VARCHAR(255) NULL DEFAULT NULL COMMENT '',

 `message` VARCHAR(255) NULL DEFAULT NULL COMMENT '',

 `createdAt` DATETIME NULL DEFAULT NULL COMMENT '',

 `updatedAt` DATETIME NULL DEFAULT NULL COMMENT '',

 PRIMARY KEY (`id`) COMMENT '')

ENGINE = InnoDB

AUTO_INCREMENT = 9

DEFAULT CHARACTER SET = latin1;

Let's move to next step.

Implementing the application
Let's create our new Sails.js app, as shown in the following:

sails create <app name>

Once the app is created, we need an API to deal with our status updates. Let's create
that as well:

sails generate api Message

Sails.js will create controller and model in the respective folders. Let's define the
model first. Here is models.js in the /api/models/ folder:

module.exports = {
 attributes: {
 name : { type: 'string' },
 message : { type: 'string' }
 }
};

Before going to the controller and Socket modules, let's look at the view first. The
user interface will be quite simple. We will have a textbox to accept the name and a
text area to accept the status messages. It will look similar to the following diagram:

Chapter 6

[59]

NAME

STATUS

User Status

The following is the code to generate a similar view. We need to make changes in the
views/homepage.ejs file, as follows:

<script type="text/javascript">
 setTimeout(function sunrise () {
 document.getElementsByClassName('header')[0].style.
 backgroundColor = '#118798';
 }, 0);
</script>

<div class="default-page" ng-app="sails-chat-example">
 <div class="header">
 <h3 id="main-title" class="container"><%= __('Real time status
 update example using sails.js.') %></h3>
 </div>
 <div class="main container clearfix">
 <ul class="getting-started">
 <div class="container" ng-controller="MainCtrl">
 <form class="form-horizontal" ng-submit="send()">
 <div class="form-group">
 <div class="col-sm-9">
 <input type="text" class="form-control"
 placeholder="Username" ng-model="data.name">

Building a Real-Time News Feed App Using Sails.js

[60]

 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-9">
 <textarea rows=5 cols=5 class="form-control"
 placeholder="Message" ng-model="data.message">
 </textarea>
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-3 col-sm-9">
 <button type="submit" class="btn btn-default">
 Post</button>
 </div>
 </div>
 </form>
 <div class="panel panel-default" ng-repeat="n in messages">
 <div class="panel-heading">
 <h3 class="panel-title">{{n.name}}</h3>
 </div>
 <div class="panel-body">
 {{n.message}}
 </div>
 </div>
 </div>

 </div>
</div>

To handle the UX features, we are going to use AngularJS. We will provide the
working screenshot in the next chapter.

We need to add the Bootstrap and Angular dependencies. To add them, add the
dependency in views/layout.ejs, as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>New Sails App</title>
 <meta name="viewport" content="width=device-width,
 initial-scale=1, maximum-scale=1">

Chapter 6

[61]

 <!--STYLES-->
 <link rel="stylesheet"
 href="/styles/bootstrap/css/bootstrap-theme.min.css">
 <link rel="stylesheet"
 href="/styles/bootstrap/css/bootstrap.min.css">
 <link rel="stylesheet" href="/styles/importer.css">
 <!--STYLES END-->
 </head>

 <body>
 <%- body %>
 <!--SCRIPTS-->
 <script src="/js/dependencies/angular/angular.min.js"></script>
 <script src="/js/dependencies/jquery/jquery.min.js"></script>
 <script src="/js/dependencies/sails.io.js"></script>
 <script src="/js/app.js"></script>
 <script src="/js/bootstrap/js/bootstrap.min.js"></script>
 <!--SCRIPTS END-->
 </body>
</html>

We are done with the view section. Let's make changes in the controller file. We need
to edit /api/controllers/MessageController.js, as follows:

module.exports = {
 status: function(req, res){
 Message.query("INSERT into
 message(`name`,`message`)VALUES('"+req.param('name')+"',
 '"+req.param('message')+"')",function(err,rows){
 if(!err) {
 Message.publishCreate({id:rows.insertId,
 name:req.param('name'), message:req.param('message')});
 } else {
 sails.log(rows);
 }
 });
 },
 subscribe: function(req, res){
 Message.watch(req);
 },
 index : function(req,res) {

Building a Real-Time News Feed App Using Sails.js

[62]

 Message.query("SELECT * FROM `message`",function(err,rows){
 if(err) {
 res.json({"error" : true,"message" : "database error"});
 } else {
 res.ok(rows);
 }
 });
 }
};

Let's take a look at each of them. First of all, we need to have a controller that fetches
all the messages from our database for the new user. This is what controller index
will do.

Next, there is controller subscribe that, as the name implies, subscribes the new
users to the existing socket.

An important controller is chat, which does the task of adding new messages to the
database and notifying every user that is connected about the new message.

The publishCreate() method is invoked to notify and send broadcast messages
to every user that is connected to the socket. As you may have noticed, we will also
pass the data, that is, name and message with it in order to show it to our view.

Let's look at our Angular code now. The following code will reside in assets/js/
app.js:

'use strict';

angular.module('sails-chat-example', [])

 .controller('MainCtrl', ['$scope','$http',
 function ($scope,$http) {
 $scope.messages = [];
 $scope.data = {
 name : null,
 message : null
 };

 $scope.send = function(){
 io.socket.post('/message/status, $scope.data,
 function(res){});
 };

Chapter 6

[63]

 io.socket.get('/message/subscribe', function(res){});

 io.socket.on('message', function onServerSentEvent (msg) {
 switch(msg.verb) {

 case 'created':
 $scope.messages.push(msg.data);
 $scope.$apply();
 break;

 default: return;
 }
 });

 io.socket.on('connect',function(){
 $http.get('http://localhost:1337/Message')
 .success(function(data){
 for(var i = 0 ; i < data.length; i++) {
 $scope.messages.push(data[i]);
 $scope.$apply();
 }
 });
 });

 }]);

Before jumping to the explanation, I'd like to mention one more important feature
of Sails.js and its Socket. When you subscribe the controller to the socket, you can
perform the same CRUD operation that you did for the API for the Socket as well,
that is, GET, POST, PUT and so on.

We have first created the Angular module and attached the controller to it. The
controller contains our actual code. Therefore, when the user first loads the
application, we need to subscribe the user to the Socket. We will do this using the
following code:

io.socket.get('/message/subscribe', function(res){});

Next, when the user is connected, we need to show the old status from our database
to the user and we will be calling the API that we created—/Message.

Building a Real-Time News Feed App Using Sails.js

[64]

As you can see, io.socket.on('connect') gives us the access to new connected
user. Therefore, we will call the API using /GET and fetch all the messages. Once we
get the message, we will simply push it in an array and apply it to our UI using the
$apply() method.

When the user provides a new status update, we will simply use the POST request in
Socket to add them to our database.

As soon as a new message arrives and the notification has been sent by the
publishCreate() method, we will simply push the message in an array and apply it
to the UI. In the UI, we will loop over $scope.messages and show it to the user.

Let's run our application. Type sails lift in the terminal and you are good to go!
You should see the following output:

Chapter 6

[65]

Open the application at http://localhost:1337 in your browser. In order to
see the effect of Socket and real-time update, I would suggest you to open the
application in two simultaneous browser windows, as shown in the following
screenshot:

Building a Real-Time News Feed App Using Sails.js

[66]

You may have observed that as soon as we add a status to a window, it is added to
the database and other clients receive the socket notification. The following is the
database view for both the messages:

Summary
In this chapter, we covered the Sockets and their uses in Sails.js. We also covered
how to build real-time app using integral Socket of Sails.js. In the next chapter, we
will be developing another commonly used application, TODO app purely using
Sails.js.

[67]

Creating a TODO
Single-Page Application

TODOs are one of the most common applications around the web and are also
available for mobile users. In this chapter, we will try to build a simple TODO
application, where a user can add, delete, and view their TODOs.

In the previous chapters, we have used MySQL as database and you have learned
how to configure, connect, and perform queries over it. In this chapter, we will be
using MongoDB for learning purposes. Make sure that you have installed MongoDB
on your machine before moving ahead with this chapter.

In this chapter, we will learn the following topics:

•	 MongoDB support in Sails.js
•	 Defining model for API
•	 TODO app view design

Let's begin with creating a fresh Sails.js project. Run the following command to
create one:

sails create todoApp

Sails.js will create a default folder structure for you. In this project as well, we will
use HTML as a view engine rather than EJS, which we used in the previous chapter.
To do so, edit config/routes.js and delete the default route, as follows:

'/': {
 view: 'homepage'
}

Creating a TODO Single-Page Application

[68]

Let's create our API using the Sails.js command. Run the following command:

sails generate api todo

Sails.js will create controller and model for you.

MongoDB support in Sails.js
To enable MongoDB support in Sails.js, you need to install the connector and
configure it in the model file. The sails-mongo package provides what we need.
You need to install it using the following command in our project:

sudo npm install --save sails-mongo

You may not need sudo in a Windows-based system.

Once it is installed, we need to configure the connection and provide this connection
to the default model file. Open the config/connections.js file and add the
connection details of your MongoDB server.

Note that if you don't provide the MongoDB database a name, it will automatically
create a new one if migrate is set to alter or drop, as follows:

module.exports.connections = {
 /***
 * *
 * MongoDB is the leading NoSQL database. *
 * http://en.wikipedia.org/wiki/MongoDB *
 * *
 * Run: npm install sails-mongo *
 * *
 ***/
 mongoConnection: {
 adapter: 'sails-mongo',
 host: 'localhost',
 port: 27017,
 // user: 'username',
 // password: 'password',
 // database: 'your_mongo_db_name_here'
 }
};

Chapter 7

[69]

Now open config/models.js and provide the connection information, as shown in
the following:

module.exports.models = {
 connection: 'mongoConnection',
 migrate: 'alter'
};

It's highly recommended to use migrate as safe in production
environment.

This is it. Now, Sails.js will connect and perform the operation on your MongoDB
collection. Let's move ahead and configure our API.

Defining model for API
We have generated the API and Sails.js created the default files for us. I explained in
detail in Chapter 4, Developing REST API Using Sails.js, about the default functionality
of REST APIs in Sails.js. Unless we need some extra functionality, we can use the
default one given by Sails.js.

We need the following operation for our TODO app, let's validate whether the
default functionality supports this:

Operation End point
Create a new TODO task /POST todo { JSON data }

Fetch all TODO tasks /GET todo

Delete a TODO task /Delete todo { JSON data }

Sails.js provides this over REST API, therefore, we don't need to write the code for
the controller. Let's define a simple model. Open /api/models/Todo.js and add the
following code:

module.exports = {
 attributes: {
 value: {
 'type': 'text'
 }
 }
};

Creating a TODO Single-Page Application

[70]

This is pretty much it for the backend. Before jumping to the frontend, let's validate
whether the APIs are working or not.

Lift the app using the following command:

sails lift

Open the HTTP simulator (we recommend the Postman Chrome extension) and
enter the following URL:

1.	 To get all TODOs, enter the following URL:
/GET localhost:1337/todo

You will see output as follows:

2.	 To add new TODO, enter the following URL:
/POST localhost:1337/todo { data }

You will see output as follows:

Chapter 7

[71]

3.	 To delete a TODO, enter the following URL:

/DELETE localhost:1337/todo/:id

You will see output as follows:

Our API is working correctly. Let's design and code our frontend application.

Creating a TODO Single-Page Application

[72]

TODO app view design
We will design a simple layout that supports responsiveness. Here is the end output
that we will achieve after the code:

We are going to use AngularJS and Bootstrap as the JavaScript and CSS frameworks
for designing this interface.

In the /assets folder, create a new index.html file that Sails.js will serve by default.
Add the latest bootstrap file in the /styles folder and the angular.js file in the /js
folder.

The following is our index.html file. First, we need to add Bootstrap and AngularJS
files as a dependency:

<!DOCTYPE html>
<html ng-app="todoApp">
 <head>
 <title>Angular Todo Application</title>
 <meta name="viewport" content="width=device-width,
 initial-scale=1, maximum-scale=1">
 <!--STYLES-->
 <link rel="stylesheet" href="/styles/bootstrap.css">
 <link rel="stylesheet" href="/styles/importer.css">
 <!--STYLES END-->
 <!--SCRIPTS-->
 <script src="/js/angular.js"></script>
 <script src="/js/app.js"></script>

Chapter 7

[73]

 <script src="/services/TodoService.js"></script>
 <script src="/js/dependencies/sails.io.js"></script>
 <!--SCRIPTS END-->
 </head>
 <body>
 </body>
</html>

Now, we need to define the form controls. We need a textbox to add a new TODO
task and a button to submit the task. Also, a list of tasks that the users have added
before. The following code will be added to the body section of the preceding HTML
code:

<div class="container" ng-controller="TodoCtrl">
 <div class="jumbotron">
 <h1 align="center">Todo Application</h1>

 <div id="todo-form" class="row">
 <div class="col-sm-8 col-sm-offset-2 text-center">
 <form>
 <div class="form-group">
 <input type="text" class="form-control input-lg
 text-center" placeholder="Add Todo!"
 ng-model="formData.value">

 <button type="submit" class="btn btn-primary btn-lg"
 ng-click="addTodo()">Add Todo</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div id="todo-list" class="row">
 <div class="col-sm-4 col-sm-offset-4">
 <div class="checkbox" ng-repeat="todo in todos">
 <label>
 <input type="checkbox" ng-click="removeTodo(todo)">
 {{ todo.value }}
 </label>
 </div>
 </div>
 </div>
</div>

Creating a TODO Single-Page Application

[74]

We created a separate div to allow the user to add a new TODO and to show what
they have already added and can remove if they want to. The todo-list div will
do a loop using ng-repeat over every todo object and show it as a checkbox. Upon
checking this box, we will call a removeTodo() function to remove that TODO.

To add a new TODO, we have a addTodo() function. Also, upon loading, we will
pull every TODO from MongoDB and show it here.

Let's take a look at our AngularJS application file.

/assets/js/app.js
The following is the /assets/js/app.js file:

'use strict';
var todoApp = angular.module('todoApp',[]);
todoApp.controller('TodoCtrl', ['$scope', '$rootScope', 'TodoService',
function($scope, $rootScope, TodoService) {
 $scope.formData = {};
 $scope.todos = [];
 TodoService.getTodos().then(function(response) {
 console.log(response);
 $scope.todos = response;
 })
 $scope.addTodo = function() {
 console.log($scope.formData);
 TodoService.addTodo($scope.formData).then(function(response) {
 console.log(response);
 $scope.todos.push(response)
 $scope.formData = {};
 })
 }
 $scope.removeTodo = function(todo) {
 console.log(todo);
 TodoService.removeTodo(todo).then(function(response) {
 $scope.todos.splice($scope.todos.indexOf(todo), 1)
 console.log(response);
 })
 }
}])

Chapter 7

[75]

In this code, we have the following three functions:

•	 getTodos(): This will call AngularJS service, which in turn will make an
HTTP call to the Sails.js web server to pull TODOs from the database

•	 addTodo(): This will call AngularJS service, which in turn will make an
HTTP call to Sails.js web server to add a new TODO to the database

•	 removeTodo(): This will call AngularJS service, which in turn will make an
HTTP call to Sails.js web server to delete a TODO from the database; it will
also remove this element from browser DOM

Let's look at our services file. It is good practice in AngularJS to write services rather
than making a direct HTTP call using the $http factory.

/assets/js/services/ToDoService.js
The following is the /assets/js/services/ToDoService.js file:

todoApp.service('TodoService', function($http, $q) {
 return {
 'getTodos': function() {
 var defer = $q.defer();
 $http.get('/todo').success(function(resp){
 defer.resolve(resp);
 }).error(function(err) {
 defer.reject(err);
 });
 return defer.promise;
 },
 'addTodo': function(todo) {
 console.log(todo);
 var defer = $q.defer();
 $http.post('/todo', todo).success(function(resp){
 defer.resolve(resp);
 }).error(function(err) {
 defer.reject(err);
 });
 return defer.promise;
 },
 'removeTodo': function(todo) {
 console.log(todo);
 var defer = $q.defer();
 $http.delete('/todo/'+todo.id, todo).success(function(resp){
 defer.resolve(resp);

Creating a TODO Single-Page Application

[76]

 }).error(function(err) {
 defer.reject(err);
 });
 return defer.promise;
 }
 }
})

As you may have noticed, we are calling our API using the HTTP methods—GET,
POST, and DELETE—by providing proper data. The $q is a service that makes us
run the functions asynchronously and use their return value when its available.

You can refer to the official documentation
(https://docs.angularjs.org/api/ng/service/$q) of $q for more details.

Now, we are done with the frontend design as well. Upon running our application,
the following image is the end result:

We can mark the TODO as completed upon checking the box. Let's check our
MongoDB collection for the same. Open MongoDB in the terminal and use the
following commands to fetch the data:

use sails;

db.todo.find({})

https://docs.angularjs.org/api/ng/service/$q

Chapter 7

[77]

Note that the collection name is the API name of Sails.js. The following is the output
of the previous commands:

Yes, it is working as expected. We have our TODO application ready to add/delete
and list all the TODOs from super fast MongoDB.

Summary
We covered MongoDB integration and how to use it in our REST APIs. You learned
how to use AngularJS services to call the Sails.js APIs and use them to develop
modern web applications such as the TODO app. In the next chapter, we will
cover some important topics about the production checklist, which we need to
follow before going live.

[79]

Sails.js Production Checklist
Sails.js comes up with a lot of readymade stuff that we came across throughout this
book. The project structure, database drivers, and code management approach of
Sails.js is production-ready; however, there are some points that we have to look
over before pushing it to the production.

In this chapter, we will cover the following topics:

•	 Sails.js migrate in detail
•	 Sails.js security checklist
•	 Sails.js deployment checklist
•	 Sails.js hosting

Sails.js migrate in detail
We briefly studied about migrate in Chapter 5, Build a Chat System Using Sails.js
and Chapter 6, Building a Real-Time News Feed App Using Sails.js. Let's take a look
at it again with some examples. The migrate is the keyword in the model file that
tells Sails.js object-relational mapper (ORM) what to do when we initialize the
application.

There are three values of migrate, as shown in the following:

•	 safe: Never do the database operation. Developer will do this before
running application.

•	 alter: This migrates the model changes in database; however, it keeps the
existing data if the model is already present.

•	 drop: This deletes the model and data and regenerates it every time the Sails
application is lifted.

Sails.js Production Checklist

[80]

For production, the recommended or must-have value for the migrate key is safe.
The single reason behind this is database integrity. You should not play with the
production data as it has more value than your application.

On the other hand, for development purpose, you can use values other than safe
as well.

Sails.js security checklist
This is one of the important parts in the Sails.js application. Like I previously
mentioned, Sails.js comes up with every possible piece of code other than your
business logic. Sails.js also supports various common security vulnerability patches,
some of them are as follows:

•	 Cross-Site Request Forgery (CSRF)
•	 Cross-Origin Resource Sharing (CORS)
•	 Distributed Denial of Service (DDoS) attack
•	 Cross-Site Scripting (XSS) attack

CSRF
CSRF is an attack where web browsers running at the user's end perform some
action without the permission of the user due to some malicious code loaded via the
website, e-mail, or anything that they are currently using on their system.

For example, your application is running on Sails.js and a hacker uses the cookies of
client browser to perform an extra HTTP call to another server in order to steal the
current session data. Your application should detect such kind of attack and prevent
it as much as possible.

To enable CSRF protection, open the config/csrf.js file and uncomment the
following code and change false to true:

module.exports.csrf : true

This will make sure that all standard security provision related to CSRF is running
into your application.

Chapter 8

[81]

CORS
CORS is a mechanism where we need to allow our application to be called from
multiple servers that reside on different domain. You might need to allow this for
your application; however, we will recommend allowing only those domains that
are trusted.

To enable this open config/cors.js and change the following code:

allRoutes: true

Also, change the origin to the domain name instead of *. You can also add more
settings if your app requires it.

This is one of the most common and effective attack that can happen to your web
application. You might have heard about the Anonymous group that took down
various websites of the government officials as a protest. Most of the time, they
use a DDOS attack to achieve their objectives.

DDOS
DDOS prevention is one of the biggest research domain in the security world. To do
the most from our end, we should use the application in microservice architecture
and perform its clustering so that if a domino goes, other will take its place. If one
child node of the cluster goes down, another can take its place and the traffic is
diverted among the remaining child nodes and the service is unaffected.

On the other hand, you should use memory store for session management, such as
Redis, than using default store that uses your memory to handle the session. If a
hacker, by any chance, puts your memory into overflow condition, your system may
crash and that would be denial of the service for the user.

XSS
XSS is a type of attack where a malicious agent manages to inject client-side JavaScript
into a website so that it runs in the trusted environment of your user's browsers.

In order to prevent this attack, you need to make sure that you are using strict
validation of data before passing it to the data layer. Also, try not to commit common
JavaScript mistakes, such as using the eval() function, which lead to an XSS attack.

Here is one of the popular references of XSS prevention steps:

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_
Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Sails.js Production Checklist

[82]

An XSS attack may or may not lead to a DoS attack as well. You need to be careful
here and follow the mentioned guidelines.

Sails.js provides data validation functions for various types such as integer, Boolean,
string, and so on. Check out the complete list of functions by visiting the given URL,
which you can use to perform data validation in Sails.js:

http://sailsjs.org/documentation/concepts/models-and-orm/validations

Sails.js deployment checklist
Before you deploy your application, make sure that you have performed the
following:

•	 Configure production environment setting
•	 Run app on port 80 if there is no proxy
•	 Configure the database settings
•	 Enable CSRF protection for your POST, PUT, and DELETE requests
•	 Enable CORS
•	 Estimate the traffic from all the endpoints (such as web, mobile, and so on)

Configure production environment setting
Open config/env/production.js and change the settings, such as the following:

•	 Port
•	 Database adapter

Run app on port 80 if there is no proxy
Port 80 is the default port, where the browser listens when we hit the request. If you
are serving your application via Sails.js, then make sure that you have changed the
port to 80 from the production file.

If you are using Nginx and Socket in your application, then make sure that you make
the changes to relay WebSockets to your app in Nginx.

http://sailsjs.org/documentation/concepts/models-and-orm/validations

Chapter 8

[83]

Configure database settings
If you are using relational database such as MySQL or Oracle, then make sure that
you have set the migration setting in Sails.js configuration file properly. In the
production environment, no auto-migration will be done by Sails.js, you need to
make sure that database is configured properly.

Estimate the traffic from all the endpoints
If your application is used by multiple nodes such as mobile, web, and other
systems, then you need to estimate your traffic for possible server configuration.
Better switch to cloud if you cannot estimate or are uncertain about the traffic.

In order to deploy it to the server, we recommend you to use the PM2 (check it
in npm) process manager. You can also deploy using the forever node module or
running the sails lift command in the daemon mode.

Sails.js hosting
You can host the Sails.js application in any virtual private server (VPS) or dedicated
host. Sails.js runs over Node.js, which is quite compatible with any major operating
system (we recommend the Linux version), so there is hardly any chance of
compatibility issues.

There are some managed VPS services such as Heroku, Modulus, and so on, where
you can easily deploy your application. You can also use Amazon, DigitalOcean, or
any other service providers.

Summary
Sails.js is already a well-designed code that is quite ready for production. In
this chapter, we looked over a few things related to the configuration, security,
and deployment that will help us keep our application running smoothly in the
production environment.

[85]

Index
Symbols
$q service

URL 76

A
Active Server Pages (ASP) 19
AngularJS app

for client-side interaction 47-51
API

model, defining for 69-71
api directory 23
app

database design 57, 58
implementing 58-66

assets directory 23

C
chat application

architecture 42
flow 42
operation handling, Sails.js controller

used 46, 47
running 52, 53
Sails.js API for 44

chat system 41
Chrome Web Store 35
client-side interaction

AngularJS app 47-51
config directory 24
create operation 10
Cross-Origin Resource Sharing (CORS) 81
Cross-Site Request Forgery (CSRF) 80

Cross-Site Scripting (XSS) attack
about 81
URL 81

CRUD (create, read, update, and delete)
operation 10, 32

D
database

support, adding 25
Data Definition Language (DDL) query 44
data validation

URL 82
delete operation 10
deployment checklist

about 82
app, running on port 80 82
database settings, configuring 83
production environment setting,

configuring 82
traffic from all endpoints, estimating 83

E
Embedded JavaScript (EJS) templates file

about 23
flow 42

event loop
about 5
and non-blocking I/O model 5
working 6, 7

Express
used, for developing web server 12-15

Express.js 23

[86]

F
forever node module 83

G
Grunt

about 23
task runner file configuring, JSHint

used 27-29

H
HTTP headers 12
HTTP module

used, for developing web server 11
HTTP operations 10

I
Internet Relay Chat (IRC) 42

J
JSHint

used, for configuring Grunt task 27-29
just-in-time (JIT) 2

L
libuv library

working 3
lines of code (LOC) 2

M
middleware 16
migrate

about 79
alter value 79
drop value 79
safe value 79

model
and MySQL integration, in app 44, 45
defining, for API 69-71

Model-View-Controller (MVC) pattern 19

MongoDB database
config/connections.js file 27
config/models.js file 27
configuring, Sails.js used 26

MongoDB support
in Sails.js 68, 69

MVC concepts
about 19
controller 20
model 20
view 20

MySQL database
config/connections.js file 26
config/models.js file 26
configuring, Sails.js used 25

N
Node.js

about 1, 21
architecture 2

Node.js, architecture
libuv library 2
V8 JavaScript engine 2

node_modules directory 23
nodemon 15
npm 21

O
object-relational mapper (ORM) 79

P
phpMyAdmin 32
PM2 83
Portable Operating System Interface

(POSIX) 5
Postman chrome extension 35

R
read operation 10
Redis 81
representational state transfer (REST)

API 29, 31

[87]

REST API
api/controllers/MessageController.js

file 40
building 33
code, running 35
config/connections.js file 34
config/models.js file 34
custom controller, defining 40
database design 32
migrate 34

REST API, code running
message, deleting 39
message, reading 37, 38
message, updating 38, 39
new message, creating 35-37

routers 16
routes 11

S
sails-disk 23
Sails.js

API, for chat 44
app, creating 42, 43
controller, to handle chat operation 46, 47
deployment checklist 82
directory structure 22
hosting 83
installing 21
MongoDB support 68, 69
security checklist 80
Socket, using 56, 57
used, for configuring MongoDB

database 26
used, for configuring MySQL

database 25, 26
Sails.js, directory structure

about 22
api directory 23
assets directory 23
config directory 24, 25
node_modules directory 23
views directory 23

sails-mongo module 26

security checklist
about 80
Cross-Origin Resource Sharing (CORS) 81
Cross-Site Request Forgery (CSRF) 80
Cross-Site Scripting (XSS) attack 81

single-threaded system
about 3
versus multi-threading 4, 5

Socket
using, in Sails.js 56, 57

Socket.IO 56
sudo 21

T
TODO app view design

/assets/js/app.js file 74, 75
/assets/js/services/ToDoService.js

file 75-77
about 72-74

TODOs 67

U
Uniform Resource Locator (URL) 9
update operation 10

V
V8 JavaScript engine 2
views directory 23
virtual private server (VPS) 83

W
web server

developing, Express used 12-15
developing, HTTP module used 11
working 9, 10

WebSocket 55

Thank you for buying
Sails.js Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Node.js Design Patterns
ISBN: 978-1-78328-731-4 Paperback: 454 pages

Get the best out of Node.js by mastering a series of
patterns and techniques to create modular, scalable,
and efficient applications

1.	 Master the foundations of Node.js application
design by diving into its core patterns and
components.

2.	 Learn tricks, techniques and best practices to
solve common design and coding challenges.

3.	 A hands-on guide presented out with a
code-centric approach for designing and
creating Node.js applications without friction.

Node.js Blueprints
ISBN: 978-1-78328-733-8 Paperback: 268 pages

Develop stunning web and desktop applications with
the definitive Node.js

1.	 Utilize libraries and frameworks to develop
real-world applications using Node.js.

2.	 Explore Node.js compatibility with AngularJS,
Socket.io, BackboneJS, EmberJS, and GruntJS.

3.	 Step-by-step tutorials that will help you to
utilize the enormous capabilities of Node.js.

Please check www.PacktPub.com for information on our titles

Building Scalable Apps with Redis
and Node.js
ISBN: 978-1-78398-448-0 Paperback: 316 pages

Develop customized, scalable web apps through the
integration of powerful Node.js frameworks

1.	 Design a simple application and turn it into the
next Instagram.

2.	 Integrate utilities such as Redis, Socket.io, and
Backbone to create Node.js web applications.

3.	 Learn to develop a complete web application
right from the frontend to the backend in a
streamlined manner.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1.	 Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2.	 Tame asynchronous programming, the event
loop, and parallel data processing.

3.	 Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Revisiting Node.js Concepts
	Node.js architecture
	V8
	Event driven I/O – libuv

	Single-threaded system and its working
	Working of libuv – core of Node.js
	Multi-threading versus single-threading

	Event loop and non-blocking I/O model
	Importance of event loop
	Working of event loop

	Summary

	Chapter 2: Developing Node.js
Web Server
	Working of web servers
	HTTP operations and their use
	Create
	Read
	Update
	Delete

	Developing web server using HTTP module
	HTTP headers and content-type
	Developing web server using Express
	Using Express to develop web server
	Routers and middleware

	Summary

	Chapter 3: Introduction to Sails.js
and MVC Concepts
	Getting started with MVC concepts
	Model
	View
	Controller

	Installing Sails.js
	Understanding directory structure of Sails.js project
	The assets directory
	The views directory
	The node_modules directory
	The api directory
	The config directory

	Adding database support
	Configuring MySQL database with Sails.js
	config/connections.js
	config/models.js

	Configuring MongoDB database with Sails.js
	config/connections.js
	config/models.js

	Configuring the Grunt task runner file with JSHint
	Summary

	Chapter 4: Developing REST API
Using Sails.js
	Why it is called REST?
	The REST CRUD operation
	Database design for REST API
	Building REST API in Sails.js
	config/connections.js
	config/models.js
	Discussing migrate key
	Running our code
	Create new message
	Read the message
	Update the message
	Delete the message

	Defining custom controller
	api/controllers/MessageController.js

	Summary

	Chapter 5: Build a Chat System
Using Sails.js
	Application architecture and flow
	Creating a Sails.js app
	Sails.js API for chat
	Model definition and MySQL integration in the app
	Sails.js controller to handle the chat operation
	AngularJS app for client-side interaction
	Running the application
	Summary

	Chapter 6: Building a Real-Time News Feed App Using Sails.js
	Briefing Socket.IO
	Using Socket in Sails.js
	Discussing the database design of the app
	Implementing the application
	Summary

	Chapter 7: Creating a TODO
Single-Page Application
	MongoDB support in Sails.js
	Defining model for API
	TODO app view design
	/assets/js/app.js
	/assets/js/services/ToDoService.js

	Summary

	Chapter 8: Sails.js Production Checklist
	Sails.js migrate in detail
	Sails.js security checklist
	CSRF
	CORS
	DDOS
	XSS

	Sails.js deployment checklist
	Configure production environment setting
	Run app on port 80 if there is no proxy
	Configure database settings
	Estimate the traffic from all the endpoints

	Sails.js hosting
	Summary

	Index

